uasb系列厌氧反应器

uasb系列厌氧反应器
以UASB工艺为代表的第2代反应器,依靠颗粒污泥的形成和三相分离器的作用,使污泥在反应器中滞留,实现了SRT>HRT,从而提高了反应器内污泥浓度,但是反应器的传质过程并不理想。要改善传质效果,最有效的方法就是提高表面水力负荷和表面产气负荷。然而高负荷产生的剧烈搅动又会使反应器内污泥处于完全膨胀状态,使原本SRT>HRT向SRT=HRT方向转变,污泥过量流失,处理效果变差。

分享到:

资料下载

uasb系列厌氧反应器

UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化成沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成大气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沿着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。

uasb系列厌氧反应器

工作原理:

uasb反应器基本构造如图1所示,它相似由2层UASB反应器串联而成。按功能划分,反应器由下而上共分为5个区:混合区、第1厌氧区、第2厌氧区、沉淀区和气液分离区。

混合区:反应器底部进水、颗粒污泥和气液分离区回流的泥水混合物有效地在此区混合。

 第1厌氧区:混合区形成的泥水混合物进入该区,在高浓度污泥作用下,大部分有机物转化为沼气。混合液上升流和沼气的剧烈扰动使该反应区内污泥呈膨胀和流化状态,加强了泥水表面接触,污泥由此而保持着高的活性。随着沼气产量的增多,一部分泥水混合物被沼气提升至顶部的气液分离区。

气液分离区:被提升的混合物中的沼气在此与泥水分离并导出处理系统,泥水混合物则沿着回流管返回到最下端的混合区,与反应器底部的污泥和进水充分混合,实现了混合液的内部循环。

 第2厌氧区:经第1厌氧区处理后的废水,除一部分被沼气提升外,其余的都通过三相分离器进入第2厌氧区。该区污泥浓度较低,且废水中大部分有机物已在第1厌氧区被降解,因此沼气产生量较少。沼气通过沼气管导入气液分离区,对第2厌氧区的扰动很小,这为污泥的停留提供了有利条件。

沉淀区:第2厌氧区的泥水混合物在沉淀区进行固液分离,上清液由出水管排走,沉淀的颗粒污泥返回第2厌氧区污泥床。

从uasb反应器工作原理中可见,反应器通过2层三相分离器来实现SRT>HRT,获得高污泥浓度;通过大量沼气和内循环的剧烈扰动,使泥水充分接触,获得良好的传质效果。

优点:

uasb的构造及其工作原理决定了其在控制厌氧处理影响因素方面比其它反应器更具有优势。

1、容积负荷高:IC反应器内污泥浓度高,微生物量大,且存在内循环,传质效果好,进水有机负荷可超过普通反应器的3倍以上。

2、节省投资和占地面积:IC反应器容积负荷率高出普通UASB反应器3倍左右,其体积相当于普通反应器的1/4~1/3左右,大大降低了反应器的基建投资[5]。而且IC反应器高径比很大(一般为4~8),所以占地面积特别省,非常适合用地紧张的工矿企业。

3、抗冲击负荷能力强:处理低浓度废水(COD=2000~3000mg/L)时,反应器内循环流量可达进水量的2~3倍;处理高浓度废水(COD=10000~15000mg/L)时,内循环流量可达进水量的10~20倍[5]。大量的循环水和进水充分混合,使原水中的有害物质得到充分稀释,大大降低了毒物对厌氧消化过程的影响。

4、抗低温能力强:温度对厌氧消化的影响主要是对消化速率的影响。IC反应器由于含有大量的微生物,温度对厌氧消化的影响变得不再显著和严重。通常IC反应器厌氧消化可在常温条件(20~25 ℃)下进行,这样减少了消化保温的困难,节省了能量。

5、具有缓冲pH的能力:内循环流量相当于第1厌氧区的出水回流,可利用COD转化的碱度,对pH起缓冲作用,使反应器内pH保持状态,同时还可减少进水的投碱量。

6、内部自动循环,不必外加动力:普通反应器的回流是通过外部加压实现的,而IC反应器以自身产生的沼气作为提升的动力来实现混合液内循环,不必设泵强制循环,节省了动力消耗。

(7、出水稳定性好:利用二级UASB串联分级厌氧处理,可以补偿厌氧过程中K s高产生的不利影响。Van Lier[6]在1994年证明,反应器分级会降低出水VFA浓度,延长生物停留时间,使反应进行稳定。

8、启动周期短:IC反应器内污泥活性高,生物增殖快,为反应器快速启动提供有利条件。IC反应器启动周期一般为1~2个月,而普通UASB启动周期长达4~6个月。

9、沼气利用价值高:反应器产生的生物气纯度高,CH4为70%~80%,CO2为20%~30%,其它有机物为1%~5%,可作为燃料加以利用[8]。

适用范围:

uasb处理技术从问世以来已成功应用于土豆加工、菊苣加工、啤酒、柠檬酸和造纸等废水处理中。1985年荷兰首次应用IC反应器处理土豆加工废水,容积负荷(以COD计)高达35~50kg/(m3·d),停留时间4~6 h[9];而处理同类废水的UASB反应器容积负荷仅有10~15 kg/(m3·d),停留时间长达十几到几十个小时[3]。

在啤酒废水处理工艺中,IC技术应用得较多,目前我国已有3家啤酒厂引进了此工艺。从运行结果看,IC工艺容积负荷(以COD计)可达15~30 kg/(m3·d),停留时间2~4.2 h,COD去除率ηCOD>75%[9];而UASB反应器容积负荷仅有4~7 kg/(m3·d),停留时间近10 h。

对于处理高浓度和高盐度的有机废水,IC反应器也有成功的经验。废水COD约7900mg/L,SO42-为250mg/L,Cl-为4200mg/L。采用22m高、1100m3容积的IC反应器,容积负荷(以COD计)达31 kg/(m3·d),ηCOD>80%,平均停留时间仅6.1 h。

上一篇 : 真空连续带式过滤机    下一篇 :  SA系列陶瓷过滤机
  • 电话

    86-0536-6116888

    手机

    13906460679

在线客服
扫一扫访问手机站扫一扫访问手机站
访问手机站